
bash startup files, awk, stty

Todd Kelley
kelleyt@algonquincollege.com

CST8207 – Todd Kelley 1

 midterms (Feb 11 and March 1)

 bash startup files

 awk

 stty

2

 When we customize our shell behavior by
◦ setting environment variables (for example, export
PATH=/bin:/usr/bin:/sbin)

◦ setting aliases (for example alias ll=“ls –l”)

◦ setting shell options (for example, shopt –s failglob or
shopt –s dotglob)

◦ setting shell options (for example, set –o noclobber)

we make these customizations permanent using bash startup
files

CST8177 – Todd Kelley 3

 http://teaching.idallen.com/cst8207/12f/notes/210_startup_files.html

 ~/.bash_profile is sourced by your login shell when you
log in
◦ the things we set up here are done only once when we log in

◦ export-ed variables here are inherited by subshells

◦ we source ~/.bashrc here because login shells do not source it

 ~/.bashrc is sourced by each non-login subshell, interactive
or not
◦ if the subshell is invoked with the -–norc option, this file is NOT sourced

◦ here we set up things that are not inherited by the login shell

◦ inside this file, at the top, we check whether it’s an interactive or non-
interactive shell:
[-z "$PS1"] && return

◦ we set aliases in this file

◦ we set options configured with shopt and set in this file

CST8177 – Todd Kelley 4

http://teaching.idallen.com/cst8207/12f/notes/210_startup_files.html
http://teaching.idallen.com/cst8207/12f/notes/210_startup_files.html
http://teaching.idallen.com/cst8207/12f/notes/210_startup_files.html

 When a login shell starts
1. execute commands from /etc/profile, if that

file exists

2. execute commands from the first of these that is
readable (in order):

1. ~/.bash_profile

2. ~/.bash_login

3. ~/.profile

 The -–noprofile command line option inhibits
this behavior

 When a login shell exits

1. read and execute commands from the file
~/.bash_logout, if it exists

CST8177 – Todd Kelley 5

 When an interactive non-login shell starts
1. execute commands from ~/.bashrc, if that file

exists

 The -–norc command line option to bash
inhibits this behavior

 The -–rcfile file option specifies that
file should be used instead of ~/.bashrc

CST8177 – Todd Kelley 6

 Configuration in /etc/profile applies to all
users on the system

 The files in /etc/skel/ are copied to newly
created user accounts (can give new users a
default copy of .bash_profile and .bashrc)

CST8177 – Todd Kelley 7

 The bash process used to execute a shell
script is non-interactive

 stdin and stdout not connected to a
terminal (more details in bash manpage)

 In this case, bash will look for a filename in
the variable BASH_ENV and source that file

 if [-n "$BASH_ENV"]; then . "$BASH_ENV"; fi

CST8177 – Todd Kelley 8

 we used awk to extract the first column of a
space delimited input stream:
◦ awk ‘{print $1}’

 {print $1} is actually an awk program

 the single quotes prevent the shell from
interpreting the { } and $

 This program prints the first field of every
line of the input

 The input can come from stdin or from a
file given as an argument

CST8177 – Todd Kelley 9

 more generally, we have

pattern{action}

 awk reads its input line by line, and for each
line that matches pattern, the action is
taken

 If no pattern is specified, then every line
matches

 if no action is specified, the default action is
print (so awk /this/ is like grep this)

CST8177 – Todd Kelley 10

 BEGIN is a special pattern that matches just
before the first actual input line

 END is a special pattern that matches just
after the last actual input line

 $0 denotes the whole input line

 $1 denotes the first field in the input line

 $2 denotes the second field in the input line,
and so on

 NF denotes the number of fields

 FS denotes the field separator (default whitespace)

CST8177 – Todd Kelley 11

 two main ways to set the input field separator

 as an argument on the command line
awk –F: ‘/tgk/{print $7}’ /etc/passwd

◦ this would print field 7, the user’s shell, for any
password record that contains tgk

 Or, we could set the FS variable in a BEGIN
action
awk ‘BEGIN{FS=“:”}/tgk/{print $7}’ /etc/passwd

◦ notice that this uses two pattern{action}pairs

CST8177 – Todd Kelley 12

 for all lines of output from wc, print the first field

 wc /etc/passwd | awk '{print $1}’

 for all lines in the /etc/passwd file, print the
number of fields

 awk -F: '{print NF}' /etc/passwd

 for all lines in the /etc/passwd file, print the last
field – note difference between NF above and $NF
here

 awk -F: '{print $NF}' /etc/passwd

CST8177 – Todd Kelley 13

 print “RIGHTMOSTFIELD” as a header at the top, and then print the
last (rightmost) field of every line in the /etc/passwd file – notice
there are two pattern{action}pairs, and the second one has no
pattern

awk -F: 'BEGIN{print “RIGHTMOSTFIELD"} {print $NF}' /etc/passwd

 Same as above, but this time ignore lines that begin with # (this one
uses a regular expression – we will learn regular expressions later)

awk -F: 'BEGIN{print "LASTFIELD"} !/^#/{print $NF}' /etc/passwd

CST8177 – Todd Kelley 14

 recall the effect of these control characters:
◦ ^Z suspend the current foreground process

◦ ^C terminate the current foreground process

◦ ^D end of file character

◦ ^U kill character to erase the command line

 these are actually properties of the terminal

 they can be set with the stty command

 stty –a : print out the current tty settings

 stty susp ^X :(that’s a caret ^, shift-6 on my
keyboard, followed by capital X) means set the
susp character to CTRL-X instead of CTRL-Z

CST8177 – Todd Kelley 15

 if you accidentally dump the contents of a
binary file to your screen, and all the control
characters reconfigure your terminal on you,
you can reset it to sane values with

 stty sane

CST8177 – Todd Kelley 16

