Updated: 2003-09-23 11:45

## Additional Materials

See the sidebar at the left for additional materials to supplement Alan's web pages.  The items are explained in the text below:

### Calculating Cylinder / Head / Sector

If a particular disk has 6 surfaces and 50 sectors/track, what is the C/H/S (Cylinder/Head/Sector) location of disk sector 454 (all values in decimal)?

Method: Calculate how many full cylinders and tracks precede the given sector.

Our sector is number 454, therefore 454 sectors precede it (those are disk sector numbers 0 through 401 inclusive).

 Calculate the number of full cylinders: C Subtract the sectors contained in full cylinders that precede given sector. Each cylinder contains 6 surfaces times 50 sectors = 300 sectors/cylinder. Dividing 454 by 300 gives: 1 full cylinder with a remainder of 154 sectors. Therefore, one full cylinder precedes sector number 454. That cylinder is numbered zero, because cylinders number from zero. Cylinder zero is full, so the cylinder that contains our sector must be the next (not full) cylinder after cylinder zero.  That cylinder is number 1. Therefore: C = 1 Calculate the number of full tracks: H (Each track corresponds to a different surface and a different head.  Track = head = surface.) Subtract, from the sectors that remain, the sectors contained in full tracks that precede the given sector. (These full tracks are in cylinder 1, calculated above.) Each track contains 50 sectors. Dividing the remaining 154 sectors by 50 gives: 3 full tracks with a remainder of 4 sectors. Therefore, in cylinder 1, 3 full tracks precede sector number 454. Those 3 tracks are numbered 0,1,2, because the heads (tracks) number from zero. Tracks 0-2 are full, so the track that contains our sector must be the next (not full) track after track 2.  That track is number 3. Therefore: H = 3 Calculate the number of full track sectors: S (Reprise: We calculated that cylinder 0 is full; tracks 0,1,2 of cylinder 1 are also full.) How many sectors remain in cylinder 1, track 3 that precede the given sector? The remainder of 4 above tells us that, in track 3 of cylinder 1, four track sectors precede sector number 454. Those four track sectors are numbered 1,2,3,4,  because track sectors number from one (not from zero). Track sectors 1-4 are full, so the track sector that contains our sector must be the next sector after track sector 4.  That track sector number is 5. Therefore: S = 5

Therefore, disk sector 454 is located at (decimal) C/H/S = 1/3/5

### Saving output from DEBUG (Project 4)

Some of the assignments require you to save the output of DEBUG in a file.  If you're running in a DOS Window under Windows 9x, you can always use the mouse to copy text and paste it into another application such as Notepad, Wordpad, or Write.  (Do not save the window as a graphic using Print Screen - the resulting file is huge and unnecessary.  Save the text only, using cut-and-paste into another application such as Write, Wordpad, or Notepad, and print from there.)

If you're running in pure-DOS mode, without Windows, study the examples below under the heading DEBUG Scripts.  You can enter a few DEBUG commands into a text file, and have DEBUG read the file and execute the commands while you redirect the output into an output file.  Then, you can print the output files.

### Your first Intel Assembler programs

See my first Intel programming efforts in the sidebar.  First is a one-page program named onepage.asm that you can select and download to make sure your assembler and linker are working correctly.  (If you can't assemble and run this simple program without any warnings or errors, something is wrong with your assembler or linker!)

The command lines I used to assemble and link this program are given in the comments at the beginning of the program.  Either put the ASM and VAL programs in the same directory as your program, or adjust your DOS PATH variable to include where they reside.  Read the documentation for details on how the ASM and VAL programs work.

Next is a longer program (mostly comments!) named first.asm that uses Alan Pinck's I/O Package.  You will need Alan's I/O package in the current directory on your disk to assemble and run this example.  This program is a good test to see if the I/O package downloaded to your computer correctly.

Also included is Alan's stars.asm program that prints asterisks based on one key of input, and a modified version of his tail.asm program that displays the Command Tail in the Program Segment Prefix.  The tail.asm program shows how a set of high-level language statements might be turned into assembler by a compiler (though this program was translated by hand, not by a compiler).

The program series.asm is a fairly direct translation of LMC (Little-Man Computer) mnemonic instructions into Intel mnemonic instructions.  The original web page describing this algorithm is here: http://elearning.algonquincollege.com/coursemat/pincka/dat2343/lect054.htm

#### Mandatory Program Style

Programs submitted for marking in this course must adhere to the following structure:

 The first line of each program must contain its name.  This enables the instructor to find the program on your diskette, if the assignment requires you to submit the program on diskette. The author of the program is required.  This enables the instructor to give you a mark for your program.  No name - no mark. Assembler programs are written in three columns: Labels, Mnemonics, and Operands.  Programs that choose to put Labels in column 2 or Mnemonics in column 1 are unreadable and unmarkable.  Follow the example of the sample programs carefully! Comment your code!  Unlike high-level languages where you can see by the names of the variables what manipulation is happening to your data, assembly language programming involves operations on registers whose names have no intrinsic meaning in the algorithm.  While comments such as the one following are not useful in any programming language:     loop:    add   al,20h      ; add 20h to AL  (pointless comment) comments relating to your algorithm are extremely useful:     loop:    add   al,20h      ; convert uppercase char to lowercase Comments are required! It is not uncommon to see every line of an assembler program carry some form of simple in-line comment that explains how the operation relates to the algorithm being used.

#### Text editing your ASM Programs

The ASM and MASM assembler programs both insist that files be well-formed, with proper line end characters on every line, including the last line of the file.  You cannot create a text file using a word processor, unless you explicitly select "Save as text" when you save the file.  If you use Windows Notepad to build an ASM file, make sure that the last line of the file ends in a RETURN character.  Failure to do this will result in "premature end of file" errors of this type:

C:> asm /s onepage ;
End of file encountered on input file
end start
onepage.asm(35): ERROR#85 - Premature end of file

Edit the file to add the missing RETURN on the last line of the file.  Reading the file into DOS EDIT and writing it out will fix the problem, as will reading the file into VIM (an open source version of Unix VI) and writing it out again.

If you see programming as a career, you will do well to pick and learn a proper text editor that has cut buffers, key macros, and global search-and-replace capabilities.  (I use VIM on both Unix and Windows.)  Keyboard and editing skills should not stand in your way of a good job!

### Using DOS DEBUG II

The DOS DEBUG command lets you single-step through your programs to debug them.  Here are some links to descriptions of how to use the DOS DEBUG command:

http://chesworth.com/pv/technical/dos_debug_tutorial.htm
http://www.datainstitute.com/debug1.htm

#### DEBUG scripts

One of the handy things you can do with DEBUG is prepare small text files of DEBUG commands and assembler instructions and run them through DEBUG using command line redirection to get a quick idea of how something works.  See the script file debug_script.txt and its corresponding output file debug_script_out.txt.  I've edited the output to add comments explaining what I was doing in the script file, and how to create the script file.

#### Tracing COM file programs

DEBUG is able to load and let you single-step through ".COM" format executables.  The quickest way to get the executable loaded into DEBUG is to give the program you wish to debug as a command argument.  All .COM programs start at segment offset 0100h, so that's where you'll find your first instructions, ready to be traced:

C:> debug myprog.com
-u 0100
1454:0100 BE8100        MOV     SI,0081
1454:0103 803C0D        CMP     BYTE PTR [SI],0D
1454:0106 7421          JZ      0129
1454:0108 803C20        CMP     BYTE PTR [SI],20
1454:010B 7511          JNZ     011E
1454:010D BA2F01        MOV     DX,012F
1454:0110 B409          MOV     AH,09
1454:0112 CD21          INT     21
1454:0114 83C601        ADD     SI,+01
1454:0117 803C20        CMP     BYTE PTR [SI],20
1454:011A 74F8          JZ      0114
1454:011C EBE5          JMP     0103
1454:011E 8A14          MOV     DL,[SI]
-

With your program in memory, you are now ready to debug it by single-steping through it using the "Trace" or "Proceed" commands, watching the flow of control and the values of the registers.

If you want to supply command line arguments to a program being debugged, simply add them to your DOS command line when you call DEBUG:

C:> debug myprog.com argument1 argument2 arg3 ...etc...

#### Using "Trace" vs. "Proceed" in DEBUG

Don't use "Trace" to trace an INT instruction; use "Proceed" instead.  If you trace the INT instruction, you will end up tracing the call to the interrupt service routine in DOS that actually performs the interrupt service, and that can be many hundreds or thousands of instructions!  The "Proceed" instruction will not trace the interrupt service routine; it will simply let it execute (without tracing each instruction) and it will pause when the service routine returns to your program.

### Understanding PUSH, POP, CALL, and INT

The PUSH, POP, CALL, and INT instructions all use the stack (the memory area pointed at by SS:SP).  The following DEBUG scripts and their annotated output files show what happens.  Each of the input files was run through DEBUG to produce the corresponding output file, to which explanatory comments were added by hand:

C:> debug <push_pop.txt >push_pop_out.txt
C:> debug <call_push.txt >call_push_out.txt
C:> debug <int_push.txt >int_push_out.txt
DEBUG Input Annotated DEBUG Output
push_pop.txt  push_pop_out.txt
call_push.txt  call_push_out.txt
int_push.txt  int_push_out.txt

Homework, test, and exam questions typically show one of these types of instructions and ask you to describe which registers and what memory is affected after the instruction executes.

### Computer Math and Number Systems

http://chesworth.com/pv/technical/computing_numbers.htm

## Homework

See the Homework Exercises created by Alan Pinck for this course.

## Lecture Notes

See the Lecture Notes created by Alan Pinck for this course.

### Greatest Common Divisor (GCD)

See the GCD pages in: http://www.idcc.net/canisius/cs110sp99/Class04/index.htm

## Text Errata

The text has some obvious errors.  As I find them, I'll list them here.  See the sidebar for information on the use of the LMC Skip instructions, and the status lights that they test.  (Negative results after a SUBTRACT are also explained therein.)

p.149
The location counter must be incremented after the fetch and before the instruction is executed.  (It must not be incremented after the instruction is executed!)
p.158
The program counter register holds the address of the next instruction to be executed (not the current instruction).

 Web Author: Ian! D. Allen idallen@idallen.ca      Updated: 2003-09-23 11:45 Support free and non-commercial Internet. This site works best in Any Browser, a campaign for non-specific WWW. This work is licensed under a Creative Commons License.