
DAT 2330 − Ian Allen − Fall 2004 -1- 100 minutes

Shell Programming - Points: 68 (10 of 20%)

On the Course Linux Server, write and submit as datsubmit 33 an executable shell script named
test3.sh that will do the following actions, in the exact order given below. You will write approximately
45-50 lines of executable code. For full marks, you must put a one-line comment containing the step number
in front of the executable code in each step. Do not put a Step Number comment as the first line of the file!

Summary and Purpose (what this script will do):
The first argument to this script is a positive integer number of lines. The second argument is an
optional message string. The third argument is an optional file name. The script will compare the
number of lines in the file to the given number and output the message.

1. [Points: 5] Structure your script using the standard nine-part format given in DAT2330 Notes file
script_style.txt ; howev er, do not include the Purpose or Assignment Label (parts 4&5).

2. [Points: 9] If the number of arguments is not one, two, or three, issue a good error message (follow the
DAT2330 guidelines for error messages) and exit the script with status 2.

3. [Points: 2] Put the first argument (an integer number of lines) into a variable named basenum .

4. [Points: 7] If the number in variable basenum is not positive (greater than zero), issue a good error
message and exit the script with status 3.

5. [Points: 5] If there is a second argument (an optional message string), put the second argument into a
variable named message ; otherwise, put the string Test File into the variable.

6. [Points: 6] Make sure the string in variable message is not zero length (null); otherwise, issue a good
error message and exit the script with status 4.

7. [Points: 8] If there is a third argument (an optional file name), put the third argument into a variable
named myfile ; otherwise, prompt and get the missing file name from the user and put the file name
entered by the user into variable myfile . Quick-exit the script with status 5 if the user signals EOF to
the script. (No error message is needed.)

8. [Points: 4] Make the name in variable myfile lower-case. Quick-exit the script (no message) with
status 6 if doing this fails.

9. [Points: 7] Make sure the name in variable myfile is the name of a plain file; otherwise, issue a good
error message and exit the script with status 7.

10. [Points: 3] Put the count of lines contained in the user’s file into a variable named count .

11. [Points: 2] Output one line containing the file name and number of lines it contains on standard output.

12. [Points: 10] Compare the number of lines in the user’s file against the user’s input number and output one
message on standard output using one of the the following format templates:

MMM XXX is larger than base number YYY
MMM XXX is the same size as base number YYY
MMM XXX is smaller than base number YYY

where MMM is replaced in the template by the message string, XXX is replaced by the name of the user’s
file and YYY is replaced by the value of the user’s number. These message templates are examples. Do
not output the place-holder strings MMM , XXX or YYY . Output only one of the messages, for example:

Test File foo.txt is larger than base number 123

Put a one-line comment containing the step number on the line above the executable code in each step.

Script Programming DAT 2330 Unix Test #3 - 20% 100 minutes


